studiehandbok@lith
 

Tekniska högskolan vid Linköpings universitet

 
År: 2017
 
Civilingenjörsutbildning i teknisk fysik och elektroteknik , 300 hp
/ Applied Physics and Electrical Engineering /
 
Programmets syfte/vision
  • Y-programmet utbildar civilingenjörer som kan arbeta vid den internationella teknikfronten och där befästa och förstärka kompetensen inom näringsliv och samhälle.
  • En Y-ingenjör har förmåga att skapa, utveckla, anpassa och använda modern teknik för att möta behoven som ställs från näringsliv och samhälle.
  • Med förståelse för teknikens roll i ett helhetsperspektiv kan Y-ingenjören i sin verksamhet också möta samhällets och enskilda individers krav på miljö, resurshushållning och ekonomi.
 
Programmål

Efter genomgången utbildning förväntas en civilingenjör från teknisk fysik och elektroteknikprogrammet ha följande kunskaper och färdigheter:

Matematiska, naturvetenskapliga och teknikvetenskapliga kunskaper
Y-ingenjören har en solid grund i matematik, naturvetenskap och teknik och kan, utgående från breda och djupa kunskaper inom dessa områden, strukturera, formulera och lösa komplexa tekniska problem

  • Kunskaper i grundläggande matematiska och naturvetenskapliga ämnen
    En Y-ingenjör har en stark grund i matematik, vilket innefattar kunskaper i såväl grundläggande ämnen som analys och linjär algebra som komplex analys, vektor- och fourieranalys. I den matematiska grunden ingår även kunskaper inom sannolikhetslära, matematisk statistik, optimeringslära och tekniska beräkningar. Y-ingenjören har också solida kunskaper inom fysik och kan beskriva och modellera fenomen inom vågfysik, mekanik, elektromagnetism, termodynamik, statistisk mekanik och grundläggande kvantmekanik. En Y-ingenjör kan använda matematiken och fysiken som verktyg, strukturera, abstrahera och modellera problem inom teknisk fysik och elektroteknik.
  • Kunskaper i teknikvetenskapliga ämnen
    En Y-ingenjör har en bred teknisk kompetens med kunskaper och färdigheter inom såväl teknisk fysik och elektroteknik. Detta innebär att:
    • Y-ingenjören kan använda begrepp, teorier och metoder från vågfysik, mekanik, elektromagnetism, termodynamik, statistisk mekanik och grundläggande kvantmekanik för att analysera och utveckla tekniska system inom teknisk fysik och inom elektroteknik. Detta innefattar också att kunna göra relevanta beräkningar, i förekommande fall med datorstöd, och utföra experimentella undersökningar.
    • En Y-ingenjör kan modellera, analysera och använda systematiska metoder för att göra konstruktioner inom såväl analog som digital elektronik. Detta innefattar också att göra experiment och använda relevant utrustning för dessa ändamål. Y-ingenjören har också medverkat i genomförandet av en större projektuppgift.
    • En Y-ingenjör kan beskriva, strukturera, abstrahera och modellera tekniska problem med datavetenskapliga begrepp och modeller. Y-ingenjören har kunskaper och färdigheter i objektorienterad programutveckling.
    • En Y-ingenjör kan hantera de begrepp och matematiska modeller som krävs för att hantera linjära dynamiska system i samverkan med deterministiska signaler inom signalanalys och reglerteknik.
  • Fördjupade kunskaper i något/några tillämpade ämnen
    En Y-ingenjör har fördjupade tekniska kunskaper inom en vald masterprofil. Masterprofilen innehåller kurser omfattande 36 – 54 högskolepoäng och består av kurser inom ett väldefinierat tekniskt område, där en av kurserna är en projektkurs. Programmets masterprofiler är:
    • Teknisk matematik
    • Finansiell matematik
    • Teknisk fysik – Teori, modellering och visualisering
    • Teknisk fysik – Material- och nanofysik
    • Elektronik
    • System på chip
    • Mekatronik
    • Styr- och informationssystem
    • Signal- och bildbehandling
    • Kommunikation
    • Medicinsk teknik

Individuella och yrkesmässiga färdigheter och förhållningssätt

  • Ingenjörsmässigt tänkande och problemlösning
    Y-ingenjören kan med stöd av verktyg och metoder från matematik, teknisk fysik och elektroteknik identifiera, formulera och modellera komplexa tekniska problem inom dessa områden. Detta innefattar att göra såväl kvalitativa som kvantitativa uppskattningar, göra relevanta antaganden och rimlighetsbedömningar samt beakta osäkerheter.
  • Experimenterande och kunskapsbildning
    En Y-ingenjör äger förmåga att tillägna sig ny kunskap genom att formulera hypoteser och utvärdera dessa genom experiment. Detta innefattar att formulera matematiska modeller, använda relevant utrustning och metodik för att utföra experiment eller motsvarande, analysera resultat med såväl matematiska verktyg som programverktyg samt redovisa resultatet. Y-ingenjören har även förmågan att skaffa sig ny kunskap genom att söka relevant litteratur inom det aktuella området.
  • Systemtänkande
    Y-ingenjören har förmåga att använda systemtänkande för att modellera, analysera och utveckla tekniska system och processer. Detta innebär att kunna definiera systemgränser, göra abstraktioner, se såväl helheter som delsystem och beskriva samverkan mellan dessa samt göra prioriteringar av avvägningar.
  • Individuella färdigheter och förhållningssätt
    En Y-ingenjör visar initiativförmåga och har förmåga till ett självständigt, kreativt och kritiskt tänkande. Detta innefattar också självkännedom samt förmåga och vilja till personlig utveckling och livslångt lärande. Y-ingenjören har också förmåga att planera sin tid och sina resurser.
  • Professionella färdigheter och förhållningssätt
    Y-ingenjören kännetecknas av ansvarstagande, pålitlighet och professionellt uppträdande. Detta innefattar även att vara medveten i sin karriärplanering och hålla sig informerad om professionens utveckling.

Förmåga att arbeta i grupp och att kommunicera

  • Att arbeta i grupp
    En Y-ingenjör har god förmåga att samverka med andra personer vid utveckling av ny teknik. Detta innefattar att han/hon
    • har kunskap om vilka olika roller som finns i en (projekt-) grupp
    • känner till hur dessa roller samverkar, vad som kännetecknar en ”effektiv” grupp
    • därigenom äger förmåga att sätta samman olika roller på ett ändamålsenligt sätt
    • har förmåga att agera i olika roller i en sådan grupp; framförallt agera i projektledarrollen
  • Att kommunicera
    Y-ingenjören ska kunna
    • kommunicera skriftligt och muntligt med såväl tekniker som icketekniker
    • lägga upp en kommunikationsstrategi utifrån projektets mål
    • presentera projektresultat på ett förtroendeingivande sätt
  • Att kommunicera på främmande språk
    Y-ingenjören skall på engelska kunna läsa texter inom det egna teknikområdet samt kunna presentera projektresultat såväl skriftligt som muntligt.

Planering, utveckling, realisering, drift och affärsmässigt förverkligande av tekniska produkter, system och tjänster med hänsyn till affärsmässiga och samhälleliga behov och krav

  • Samhälleliga villkor inklusive ekonomiskt, socialt och ekologiskt hållbar utveckling
    En Y-ingenjör har perspektiv på teknikens betydelse och sin egen roll som ingenjör i samhället, både nationellt och globalt, med avseende på ekonomiskt, socialt och ekologiskt hållbar utveckling. En Y-ingenjör beaktar samhällets regelverk och har kännedom om historiska och kulturella sammanhang avseende aktuella frågor i ett globalt perspektiv.
  • Företags- och affärsmässiga villkor
    Y-ingenjören har insikter i de affärsmässiga och företagsmässiga villkoren för utveckling och införande av ny teknik.
  • Att planera system
    Y-ingenjören har kunskap och färdighet i
    • att kravsätta system och produkter, så att vederbörande kan medverka i och snabbt förstå industrins egna processer för detta
    • modellera produkter och system samt utvärdera dessa mot krav
  • Att utveckla system
    En Y-ingenjör har, inom sitt teknikområde, generella kunskaper om lämpliga utvecklingsprocesser för olika typer av konstruktioner och system och kan snabbt kan sätta sig in i industrins olika specifika utvecklingsprocesser. Y-ingenjören har stor färdighet i att tillämpa kunskaperna från sin teknikspecialitet vid utvecklingsarbete.
  • Att realisera system
    En Y-ingenjör känner till utformning och ledning av realiseringsprocessen test, verifiering och validering.
  • Att ta i drift och använda
    Y-ingenjören har kännedom om utformning, optimering och ledning, igångsättande, drift och underhåll samt systemavveckling av avancerade tekniska system.
 
Gemensamma bestämmelser
Gemensamma bestämmelser avseende särskild behörighet, anstånd, studieuppehåll, studieavbrott samt antagning till del av utbildningsprogram finns sammanställda i avsnitten b1-b6.
 
Beaktande av särskilda perspektiv
Enligt styrelsens direktiv.
 
Programmets organisation

Utbildningen inleds för samtliga studerande på programmet med grundläggande kurser i matematik, fysik, elektroteknik och programmering. Dessa kurser ger en god bas för fortsatta kurser och en livslång kompetensutveckling. Gemensamt för alla studerande på programmet är även kurser, som ger basfärdigheter i att utföra fysikaliska och elektrotekniska experiment, samt att konstruera elektro- och datatekniska system.

Utbildningen

  • termin 1-6 är gemensam för samtliga studerande.
  • fr o m termin 7 följer den studerande en masterprofil. Masterprofilerna består av ett antal för masterprofilen specifika kurser.
    Vilka kurser som är obligatoriska respektive valfria för masterprofilen anges i programplanerna det år studenten påbörjar masterprofilen. Utöver dessa kurser skall ett antal valbara kurser läsas, så att examensfordringarna uppfylls.

Alla kurser i Y-programmets programplan (utom frivilliga kurser ) för termin 7-9 får läsas som valbara av samtliga studerande vid programmet oberoende av masterprofil. Frivilliga kurser får läsas, men ej räknas med i de 300 hp som krävs för examen.

 
Programmets innehåll

Kombinationen teknisk fysik och elektroteknik drar nytta av de båda ämnesområdenas många beröringspunkter, både teoretiska och ingenjörsmässiga. Teknisk fysik och elektroteknikprogrammets bas utgörs av matematiska, natur- och teknikvetenskapliga ämnen. Dessa ämnen ger kunskaper om hur man med matematisk metodik modellerar och analyserar fysikaliska och tekniska system. De ger också grunden till att kunna tillgodogöra sig och tillämpa metoder och verktyg för konstruktion av tekniska system inom fysik, elektroteknik och datateknik. Det kan till exempel vara styrsystem i bilar, kommunikationssystem, avancerade informationssystem, medicinskt tekniska system eller system-on-chip. I en rad projektkurser tillämpas de teoretiska kunskaperna och träning i att genomföra projekt på ett professionellt sätt. Även teamwork och språklig kommunikation tränas.

Programmet innehåller flera masterprofiler som alla knyter an till aktuell forskning vid tekniska högskolan och utvecklas i takt med den. I varje masterprofil ingår en projektkurs som ger träning i ingenjörsarbete. I utbildningen finns också moment som ger en insikt i sambandet mellan den tekniska utvecklingen och människans livsbetingelser.

 
Bestämmelser för uppflyttning till högre årskurs

För att den studerande ska kunna tillgodogöra sig fortsatta studier på de senare terminerna gäller följande:

  • För tillträde till en kandidatprojektkurs på programmet gäller:
    • Den studerande skall ha minst 90hp godkänt i kurser inom programtermin 1-4 (frivilliga kurser inräknas ej). Detta krav ska vara uppfyllt senast 3 veckor in i läsperiod 2 höstterminen före kandidatprojektet skall utföras.
    • Den studerande skall ha slutfört de specifika ämneskurser som anges i kursplanen för respektive kandidatprojektkurs. Detta krav skall vara uppfyllt senast 3 veckor in i läsperiod 2 höstterminen före kandidatprojektet skall utföras. För detaljer, se regelverk.
  • För tillträde till termin 7 krävs vid terminsstart minst 150 hp inom programmets första 6 terminer. 30 hp kan alltså återstå för uppflyttning till termin 7.
    De studenter som inte uppfyller kraven ska göra en individuell plan hos studievägledaren. I första hand ska de icke avklarade kurserna från termin 1-6 inplaneras. Planering ska ske enligt programnämndens riktlinjer.
  • För tillträde till examensarbetet på masternivå krävs minst 240 högskolepoäng inom programmet. Dessutom krävs att samtliga obligatoriska kurser i termin 1 till och med 6 är avslutade samt 30 hp på avancerad nivå inom huvudområdet för examensarbetet.
 
Profiler/inriktningar

Allmänt:

  • En masterprofil omfattar 42-54 hp och består av obligatoriska och valbara kurser, varav 18-42 hp är obligatoriska kurser (däribland en CDIO-projektkurs).
  • Masterprofilerna påbörjas termin 7
  • Undantagsvis kan någon enstaka kurs efter beslut av programnämnden få bytas ut, se särskilda regler för masterprofilerna.
  • Examensbeviset anger namnet på masterprofilen som inriktning

Inom utbildningsprogrammet för teknisk fysik och elektroteknik (Y) finns ett flertal masterprofiler. Masterprofiler kan med tiden variera och aktuella masterprofiler anges varje år i programplanen.

Det finns möjlighet att läsa kurser efter en individuell masterprofil. Individuell masterprofil upprättas i samråd med studievägledningen och beslut fattas av programnämnd efter ansökan. Ansökan om att få följa individuell masterprofil skall vara motiverad. Individuell masterprofil i samband med utlandsstudier upprättas i samråd med utbildningsledaren.

 
Forskarutbildningskurser

Vissa forskarutbildningskurser är öppna för teknologer. Kontakta forskarstudierektor på resp institution:

  • IEI, forskarstudierektor@iei.liu.se
  • IFM, forskarstudierektor@ifm.liu.se
  • ISY, forskarstudierektor@isy.liu.se
  • IDA, forskarstudierektor@ida.liu.se
  • MAI, forskarstudierektor@mai.liu.se
  • IMT, forskarstudierektor@imt.liu.se
  • ITN, forskarstudierektor@itn.liu.se
  • För att få räkna med en sådan kurs i civilingenjörsexamen lämnas en ansökan in till programnämnden för beslut om kursplan.

     
    Examensarbete

    Tillåtna huvudområden för masterexamen som krävs för civilingenjörsexamen inom civilingenjörsprogrammet för Teknisk fysik och elektroteknik är teknisk fysik, elektroteknik, tillämpad matematik, datateknik samt medicinsk teknik.

    Vid vilka institutioner/ämnesområden/forskarutbildningsområden vid LiU ett examensarbete inom ovanstående huvudområden kan utföras framgår av gemensamma regelverket för examensarbete.

     
    Examenskrav

    För att uppfylla krav för civilingenjörsexamen i Teknisk fysik och elektroteknik 300 hp, skall studenten ha

    • godkänt resultat på alla obligatoriska kurser
    • följt en masterprofils regelverk för masterprofilkurser alternativt följt en individuell masterprofil
    • godkänt resultat på valbara kurser så att kravet på 300 hp uppnås
    • ett godkänt kandidatprojekt omfattande minst 15 hp (gäller antagna ht11 och senare)
    • godkänt resultat på 90 hp på avancerad nivå. Däri ska ingå:
      • kurser om minst 30 hp på avancerad nivå inom huvudområdet
      • examensarbete på 30 hp på avancerad nivå inom det valda huvudområdet
    • ett godkänt examensarbete examinerat vid Tekniska högskolan vid Linköpings universitet
    • minst 45 hp sammantaget från kurser på grundläggande nivå (G1, G2) och avancerad nivå (A) i matematik/tillämpning inom matematik, se fastställd förteckning över kurser med tillämpning inom matematik
    Särskilda kurskrav

    För antagna 2009 eller senare gäller även nedanstående krav på kurser:

    För att uppfylla målen under rubriken (se ovan)

    • Samhälleliga villkor inklusive ekonomiskt, socialt och ekologiskt hållbar utveckling (MTS)
      skall minst 6 hp vara godkända av följande kurser;
      • TKMJ24 Miljöteknik
      • TKMJ15 Miljömanagement
      • TGTU01 Teknik och etik
      • TGTU49 Teknikhistoria
      • TFYA85 Alternativa energikällor och deras tillämpningar
    • Företags- och affärsmässiga villkor
      skall minst 6 hp vara godkända av följande kurser;
      • TEAE01 Industriell ekonomi
      • TEAE04 Industriell ekonomi och organisation
      • TEIO20 Entreprenörskap och start av nya verksamheter
    • Att kommunicera på främmande språk
      skall något av följande krav vara uppfyllt
      • Godkänt examensarbete skrivet på engelska (eller annat främmande språk)
      • Godkänd kurs i engelska (eller annat främmande språk) om minst 6hp
      • Godkända utlandsstudier knutna till utbildningen under minst ett halvt år i icke-skandinaviskt land. Minst 30hp skall ha tillgodoräknats inom Y-programmet

      Maximalt kan 18hp av kurser utanför programplanen, inom språk, ekonomi, ledarskap eller annat område relevant för utbildningen, räknas med i examen.
     
    Övrigt om examen

    Från och med 2014 ingår obligatoriskt kandidatprojekt under termin 6

    De studenter som är antagna före 2011 som vill göra ett kandidatprojekt och eventuellt ta ut en kandidatexamen hänvisas till studievägledaren för planering.

     

    Tekniska högskolan vid Linköpings universitet


    Informationsansvarig: TFK , val@tfk.liu.se