studiehandbok@lith
 

Tekniska högskolan vid Linköpings universitet

 
 
År : 2017
 
TATA69 Flervariabelanalys, 6 hp
/Calculus in Several Variables/

För:   DPU   EM   I   Ii   M  

 

Prel. schemalagd tid: 64
Rek. självstudietid: 96

  Utbildningsområde: Naturvetenskap

Huvudområde: Matematik, Tillämpad matematik   Nivå (G1,G2,A): G1

  Datavetenskap Matematik

  Mål:  IUAE-matris
Att du som student skall tillägna dig den förtrogenhet med matematiska begrepp, resonemang och samband som ryms inom flervariabelanalys samt den färdighet i kalkyl och problemlösning som behövs för de fortsatta studierna. Efter fullgjord kurs skall du kunna
  • citera och förklara definitioner av begrepp såsom topologiska grundbegrepp, funktion, gränsvärde, kontinuitet, partiell derivata, lokal extrempunkt och multipelintegral.
  • citera, förklara och använda centrala satser såsom differentierbarhet medför partiell deriverbarhet, kedjeregeln, Taylors formel, satsen om karakterisering av stationära punkter, satsen om lokala maxima och minima, implicita funktionssatsen och variabelbytessatsen i multipelintegraler
  • undersöka gränsvärden, kontinuitet, deriverbarhet och differentierbarhet samt använda kedjeregeln för att transformera och lösa partiella differentialekvationer
  • förklara den geometriska betydelsen av riktningsderivata och gradient samt bestämma ekvationer för tangenter och tangentplan
  • genomföra undersökningar av lokala maxima och minima
  • förklara en implicit given funktions uppförande exempelvis genom att taylorutveckla med hjälp av implicit derivering
  • beräkna multipelintegraler med hjälp av upprepad integration och med hjälp av olika variabelbyten såsom linjära, polära och rymdpolära
  • genomföra konvergensundersökningar av och beräkna generaliserade multipelintegraler
  • utföra kontroller av resultat och delresultat för att verifiera att dessa är korrekta eller rimliga.


  Förkunskaper: (gäller studerande antagna till program som kursen ges inom, se 'För:' ovan)
Linjär algebra, Envariabelanalys

OBS! Tillträdeskrav för icke programstudenter omfattar vanligen också tillträdeskrav för programmet och ev. tröskelkrav för progression inom programmet, eller motsvarande.

  Organisation:
Undervisningen ges i form av föreläsningar och lektioner.
Kursen ges två gånger 2017; Vt2 och Ht1.


  Kursinnehåll:
Rummet R^n. Topologiska grundbegrepp. Funktioner från R^n till R^p. Funktionsytor, nivåkurvor och nivåytor. Gränsvärde och kontinuitet. Partiella derivator. Differentierbarhet och differential. Kedjeregeln. Gradient, normal, tangent och tangentplan. Riktningsderivata. Taylors formel. Lokala maxima och minima. Implicit givna funktioner och implicit derivering. Multipelintegraler. Upprepad integration. Variabelbyte. Area, volym, massa och masscentrum. Generaliserade multipelintegraler.

  Kurslitteratur:
Persson, A, Böiers, L-C: Analys i flera variabler, Studentlitteratur, Lund 2005.
Problemsamling utgiven av matematiska institutionen.


  Examination:
TEN1
En skriftlig tentamen (U,3,4,5)
6 hp
 



Undervisningsspråk är Svenska.
Institution: MAI.
Studierektor: Jesper Thorén
Examinator: Hans Lundmark (M,DPU,EMM), Göran Bergqvist (I,Ii)
Länk till kurshemsida på kursgivande institution
Ansvarig programnämnd: Maskin&Design

Engelsk kursplan


Tekniska högskolan vid Linköpings universitet


Informationsansvarig: TFK , val@tfk.liu.se
Senast ändrad: 02/05/2017