Visa svensk kursplan
Data Visualization, 6 ECTS Credits
COURSE CATEGORY   Fristående kurs
  COURSE CODE   732G35
After completion of the course the student should be able to:
- describe major principles for data visualization using static , interactive or dynamic graphs
- select suitable static, interactive or dynamic visualization techniques for common problems in data visualization,
- produce simple graphs used for analysis and make graph improvements for including into presentations
-use up-to-date open-source and commercial visualization tools to create graphs representing a data set and make statistical analysis of the obtained graphs
The course comprises:
- principles of correct data visualization and misleading graphs,
- static tools used for visualizing univariate and bivariate data sets: histograms, bar charts, scatter plots, time series plots,
-visualizing of textual information: word trees and word clouds,
-static tools used for multidimensional data: scatter plot matrices, treemaps, heatmaps, bubble plots, Chernoff faces, star charts, parallel coordinate plots,
- visualizing geographical information by using web applications and standalone software,
- creating animation by combining static graphs,
- animated bubble plots,
- interactive visualization tools: linked graphs, brushing, identification and guided tours,
- producing presentation quality graphics from simple graphs.
The teaching comprises lectures, seminars, and computer exercises. Lectures are devoted to presentations of theories, concepts and methods. Computer exercises provide practical experience of data visualization. The seminars comprise student presentations and discussions of computer assignments.
Language of instruction: English.
Written reports on computer exercises. Obligatory attendance of the seminars. One final written or oral examination.

Students failing an exam covering either the entire course or part of the course two times are entitled to have a new examiner appointed for the reexamination.

Students who have passed an examination may not retake it in order to improve their grades.

For acceptance to the course, the student should have passed courses covering a total of 60 ECTS in statistics, computer science, mathematics, applied mathematics, engineering or equivalent and including the following courses:
- basic statistics with at least 6 ECTS
- multivariate statistical analysis course or a data mining course including cluster analysis and covering at least 6 ECTS
-a course in programming like C++, Java, R or Matlab covering at least 6 ECTS.
Documented knowledge of English equivalent to Engelska B/Engelska 6 internationally recognized test, e.g. TOEFL (minimum scores: Paper based 575 + TWE-score 4.5, and internet based 90), IELTS, academic (minimum score Overall band 6.5 and no band under 5.5), or equivalent.
The course is graded according to the ECTS grading scale A-F
Course certificate is issued by the Faculty Board on request. The Department provides a special form which should be submitted to the Student Affairs Division.
The course literature is decided upon by the department in question.
Planning and implementation of a course must take its starting point in the wording of the syllabus. The course evaluation included in each course must therefore take up the question how well the course agrees with the syllabus.

The course is carried out in such a way that both men´s and women´s experience and knowledge is made visible and developed.
Data Visualization
Data Visualisering
Department responsible
for the course or equivalent:
IDA - Department of Computer and Information Science
Registrar No: 2013-00463   Course Code: 732G35      
    Exam codes: see Local Computer System      
Subject/Subject Area :          
Level   Education level     Subject Area Code   Field of Education  
C   Basic level       SA  
The syllabus was approved by the Board of Faculty of Arts and Science 2013-10-18