studiehandbok@lith
 

Tekniska högskolan vid Linköpings universitet

 
 
År : 2016
 
TATA57 Transformteori, 4 hp
/Transform Theory/

För:   FyN   Ii   MED   Yi  

 

Prel. schemalagd tid: 46
Rek. självstudietid: 61

  Utbildningsområde: Naturvetenskap

Huvudområde: Matematik, Tillämpad matematik   Nivå (G1,G2,A): G1

  Mål:  IUAE-matris
Kursen avser att ge den studerande fördjupade kunskaper inom områdena fourieranalys och transformteori, som har talrika tillämpningar inom såväl tekniken som matematiken. Efter avslutad kurs skall studenten
  • ha kännedom om tillräckliga villkor för att de olika transformerna skall existera
  • ha kännedom om och kunna använda enkla egenskaper hos transformerna (t. ex. beteende i oändligheten, skalnings- och förskjutningsregler, derivations- och integrationsregler, regler för multiplikation med tidsvariabeln)
  • kunna härleda transformer av vanliga funktioner
  • ha kännedom om inversionssatser, entydighetssatser, faltningsformler och formler av typen Parseval-Plancherel,
  • kunna tillämpa transformteorin för att lösa problem såsom differentialekvationer, differensekvationer och faltningsekvationer
  • ha kännedom om och kunna tillämpa några resultat om likformig konvergens (kontinuitet, deriverbarhet och integrerbarhet hos gränsfunktionen, Weierstrass majorantsats).


  Förkunskaper: (gäller studerande antagna till program som kursen ges inom, se 'För:' ovan)
Linjär algebra, en- och flervariablanalys

OBS! Tillträdeskrav för icke programstudenter omfattar vanligen också tillträdeskrav för programmet och ev. tröskelkrav för progression inom programmet, eller motsvarande.

  Organisation:
Undervisningen ges som föreläsningar och lektioner.

  Kursinnehåll:
I denna kurs studerar vi några viktiga linjära transformationer, med hjälp av vilka linjära problem (differential-, integral- differensekvationer) kan översättas till mer hanterbara algebraiska problem, vilkas lösningar sedan översättas tillbaka till lösningar till de ursprungliga problemen.
Följande studeras: Fourierserier, som översätter periodiska funktioner till funktionsserier. Dessa serier används för att analysera periodiska förlopp. Här är konvergensproblemet för funktionsserier viktigt, och vi tar upp likformig och punktvis konvergens samt konvergens i medel för Fourierserier. Bessels olikhet och Parsevals sats är nyckelresultat. Vi studerar även tillämpningar av fourierserier för att lösa randvärdesproblem för linjära partiella differentialekvationer.
Fouriertransformer: dessa transformer används för analys av icke-periodiska förlopp. Inversionsformeln för Fouriertransformer är central och verktygen omfattar även räkneregler, faltningsformeln och Plancherels sats.
Laplacetransformen: översätter funktioner av en reell variabel till funktioner definierade i det komplexa planet, och används för att lösa bl a begynnelsevärdesproblem . Verktygen omfattar räkneregler, faltningsformeln samt begynnelse- och slutvärdessatsen.
Z-transformen: översätter funktioner på de naturliga talen till potensserier, och används för att lösa differensekvationer. Verktygen omfattar räkneregler och faltningsformeln.


  Kurslitteratur:
Pinkus, A., Zafrany, S.: Fourier Series and Integral Transforms.
Kompletterande material (exempelsamling) utgivet av MAI.


  Examination:
TEN1
En skriftlig tentamen (U,3,4,5)
4 hp
 



Undervisningsspråk är Svenska/engelska.
Institution: MAI.
Studierektor: Jesper Thorén
Examinator: Peter Basarab-Horwath
Länk till kurshemsida på kursgivande institution
Ansvarig programnämnd: IndEk&Logistik

Engelsk kursplan

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som ingår i kursen skall därför genomföras med kursplanen som utgångspunkt.

Om inget annat anges ovan gäller betygsskala enligt avsnitt a8.5 i de gemensamma bestämmelserna.

Kursplanen gäller för 2016 enligt beslut av ansvarig programnämnd/fakultetstyrelse.

Tekniska högskolan vid Linköpings universitet


Informationsansvarig: TFK , val@tfk.liu.se
Senast ändrad: 11/27/2014