Study Guide@lith
 

Linköping Institute of Technology

 
 
Valid for year : 2016
 
TSRT91 Automatic Control, 8 ECTS credits.
/Reglerteknik /

For:   IT  

 

Prel. scheduled hours: 78
Rec. self-study hours: 135

  Area of Education: Technology

Main field of studies: Electrical Engineering

  Advancement level (G1, G2, A): G2

Aim:
After completing this course, students should be able to describe the basic requirements for and limitations of automatic control. Students should also be able to perform analysis and systematic construction of feedback control systems. This means that students will be expected to be able to do the following after completing this course:
  • Describe and analyse time and frequency domain properties of discrete-time linear dynamic systems.
  • Define basic concepts in the area of automatic control.
  • Transform mathematical models of linear dynamic systems between time domain input/output form, transfer function form, and state space form.
  • Analyse models of linear dynamic systems that are given in the forms above with respect to stability, pole placement, rise time, damping, controllability and observability.
  • Demonstrate the connections between the system properties of stability, rise time and damping in time and frequency domains.
  • Derive input/output signal relationships in feedback control systems using block diagram calculations.
  • Perform stability analysis of feedback control systems using Bode and Nyquist diagrams.
  • Construct regulators in PID-form, lead-lag form, state space form, and feedforward form based on given specifications.
  • Perform stability and robustness analysis of feedback control systems using the root locus method and robustness criterion, respectively.
  • Formulate the specifications for a feedback control system for a lab process, then model, construct and verify that system. The work should be carried out independently and documented in writing.
  • Examplify the importance of automatic control for a sustainable development in different application areas.


Prerequisites: (valid for students admitted to programmes within which the course is offered)
Calculus, one variable, Calculus, several variables, Linear algebra, Linear systems for communication

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshhold requirements for progression within the programme, or corresponding.

Supplementary courses:
Modeling and simulation, Industrial control systems, Control theory, Automatic control project course

Organisation:
The course consists of lectures, exercises, laboratory work, and work in PBL groups. Some of the exercises are computer-based. The students work with vignettes in groups and PBL is the general approach used in the course.

Course contents:
  • Difference equations, the z transform. Impulse response, step response, stability, and frequency response of discrete-time linear dynamic systems.
  • Differential equations. Transfer functions.
  • Dynamic systems. Feedback principles.
  • Stability. Error coefficients. Correspondence between dynamic properties and pole placement.
  • PID control.
  • Root loci. The Nyquist criterion.
  • Frequency description. Bode plots. Phase and amplitude margins. Specifications in the frequency domain. Lead-lag compensation.
  • Sensitivity and robustness.
  • State equations. Controllability and observability. State feedback. Observers. Elimination of stationary errors.
  • Examples of how automatic control can contribute to a sustainable development, for example in vignettes concerning a common scenario.


Course literature:
Glad T., Ljung L.: Reglerteknik. Grundläggande teori. Studentlitteratur. < br>Exercises

Examination:
Written examination
Laboratory work
Hand-in assignment
Work in PBL-groups
4,5 ECTS
1,5 ECTS
1 ECTS
1 ECTS
 



Course language is Swedish.
Department offering the course: ISY.
Director of Studies: Johan Löfberg
Examiner: Martin Enqvist

Course Syllabus in Swedish

Linköping Institute of Technology

 


Contact: TFK , val@tfk.liu.se
Last updated: 05/20/2013