Study Guide@lith
 

Linköping Institute of Technology

 
 
Valid for year : 2017
 
TBME08 Biomedical Modeling and Simulation, 6 ECTS credits.
/Biomedicinsk modellering och simulering/

For:   BME   D   IT   MED   TB   U   Y  

 

Prel. scheduled hours: 38
Rec. self-study hours: 122

  Area of Education: Technology

Main field of studies: Biomedical Engineering

  Advancement level (G1, G2, A): A

Aim:
The objective of the course is to introduce and apply general theories for modelling and simulation of systems relevant within biomedical engineering. This includes both physical and physiological models. After passing the course the student should be able to:
  • identify and describe general principles for modeling and simulating a system.
  • apply these principles when designing mathematical models for a number of realistic systems.
  • implement and use computer based modeling and simulation for studying research relevant problems within the field of biomedical engineering. This includes diagnostic and therapeutic methods, as well as physiological processes.
  • evaluate the applicability and usablity for different modells and simulation techniques.


Prerequisites: (valid for students admitted to programmes within which the course is offered)
Anatomy and physiology. Signal processing. Some programming experience is assumed.

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshhold requirements for progression within the programme, or corresponding.

Organisation:
The course has a student-centered focus with seminars, lectures and laboratory work as keystones.

Course contents:
Introduction to concepts of system modeling, model formalism and it's relationship to different simulation strategies. Application of general and specific methods to analyze and model systems. Implementation and simulation of models in a computing environment. Discrete-time and stochastic simulation methods. Evaluation of model applicability, accuracy and robustness. Laboratory activities comprising:
  • blood flow and blood pressure simulation.
  • simulation of airflow in the lungs.
  • 3D simulation with FEM technology of heat transfer in human tissue.
  • Stochastic simulation of light transport in human tissue.
  • Simulation of how bio-potentials are generated across the cell membrane.


Course literature:
Selected parts of: Modeling of Dynamic Systems, L. Ljung and T. Glad, Prentice Hall 1994.
Articles and complementary reading material, IMT 2015.


Examination:
Written examination
Laboratory work
3 ECTS
3 ECTS
 



Course language is English.
Department offering the course: IMT.
Director of Studies: Marcus Larsson
Examiner: Neda Haj-Hosseini
Link to the course homepage at the department


Course Syllabus in Swedish

Linköping Institute of Technology

 


Contact: TFK , val@tfk.liu.se
Last updated: 08/27/2015